Dynamic Radiative–Convective Equilibria Using GCM Column Physics

نویسندگان

  • ISAAC M. HELD
  • MING ZHAO
  • BRUCE WYMAN
چکیده

The behavior of a GCM column physics package in a nonrotating, doubly periodic, homogeneous setting with prescribed SSTs is examined. This radiative–convective framework is proposed as a useful tool for studying some of the interactions between convection and larger-scale dynamics and the effects of differing modeling assumptions on convective organization and cloud feedbacks. For the column physics utilized here, from the Geophysical Fluid Dynamics Laboratory (GFDL) AM2 model, many of the properties of the homogeneous, nonrotating model are closely tied to the fraction of precipitation that is large-scale, rather than convective. Significant large-scale precipitation appears above a critical temperature and then increases with further increases in temperature. The amount of large-scale precipitation is a function of horizontal resolution and can also be controlled by modifying the convection scheme, as is illustrated here by modifying assumptions concerning entrainment into convective plumes. Significant similarities are found between the behavior of the homogeneous model and that of the Tropics of the parent GCM when ocean temperatures are increased and when the convection scheme is modified.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Horizontally Homogeneous Rotating Radiative–Convective Equilibria at GCM Resolution

Rotating radiative–convective equilibrium, using the column physics and resolution of GCMs, is proposed as a useful framework for studying the tropical storm–like vortices produced by global models. These equilibria are illustrated using the column physics and dynamics of a version of the GFDL Atmospheric Model 2 (AM2) at resolutions of 220, 110, and 55 km in a large 2 10 km square horizontally...

متن کامل

Heat Transfer Study of Convective-Radiative Fin under the influence of Magnetic Field using Legendre Wavelet Collocation Method

The development and production of high performance equipment necessitate the use of passive cooling technology. In this paper, heat transfer study of convective-radiative straight fin with temperature-dependent thermal conductivity under the influence of magnetic field is carried out using Legendre wavelet collocation method. The numerical solution is used to investigate the effects of magnetic...

متن کامل

Regional air pollution and its radiative forcing: Studies with a singlecolumn chemical and radiation transport model

This study focuses on the effects of subgrid (on general circulation model (GCM) scales) convective venting of the planetary boundary layer to the free troposphere and on the interactive effects of aerosols, ozone, UV actinic flux, and radiative forcing of climate. We developed a single-column chemical transport model (SCCTM) consistent with the global Goddard Earth Observing System (GEOS) GCM ...

متن کامل

Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method

In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conducti...

متن کامل

Comparison of a single column model in weak temperature gradient mode to its parent AGCM

A single column model (SCM) version of the HadGEM1 is run in weak temperature gradient (WTG) mode, assuming a free-tropospheric temperature profile obtained from the same single column model in radiative-convective equilibrium (RCE) over a sea surface temperature (SST) of 301K. The resulting quasi-steady solutions are compared with climate statistics from time-dependent solutions of the full 3D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005